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LETTER TO THE EDITOR 
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Received 26 January 1994 

Absbact A method to construct various s = i isompic spin models wilh exact dimer ground 
states is propmed. Constructed madeb are usually of much simpler forms than those produced 
by the method using L6wdin.s pmjection operators. They include a series of one-dimensional 
Heisenberg models which consist of linearly decayed exchange interactions and are ~ f u r a l  
extensions of lhe Majumdar-Ghosh model. A two-dimensional spin model wilh four spin 
interactions is also constructed to have lhe s a  spatial symmetry as a simple square lanice. 

Quantum spin systems with frushated interactions have strong fluctuation and the fluctuation 
causes particular ground states in some cases. The Majumdar-Chosh model is such a 
quantum system in one dimension known to have dimer ground states 11-31. That is, the 
ground states are doubly degenerate and each of them is exactly a direct product of dimers 
or singlet pairs of nearest-neighbour spins. A dimer state is purely quantum mechanical and 
has no correspondent in classical states. 

It can be seen that the dimer states are the ground states of the Majumdarxhosh 
model if the Hamiltonian is rewritten as a linear combination of projection operators with 
positive coeecients [4]. Each of the projection operators consists of three spin operators 
and projects a state of three spins to the subspace of total spin 4. Each projection operator 
is positive semidefinite and the lowest eigenvalue is 0. When the Hamiltonian operates on 
the dimer states, the projection operators in it give the value 0, so that the eigenvalue of 
the Hamiltonian becomes the lowest 

Klein 141 introduced generalized projection operators to construct other Hamiltonians 
with dimer ground states. Following this method many Hamiltonians with 4-spin interactions 
are created and examined [4,5]. There is also a similar formulation with Lowdin’s projection 
operators 14.61. If we simply develop the method to use projection operators consisting of 
many spins, we have complicated Hamiltonians with many-spin interactions. It is difficult 
to consider physical meanings of interactions among more than four spins. 

In the present work, I propose a new method to construct spin models with exact 
dimer ground states. This method is a generalization of the above method using Ewdin’s 
projection operators and includes it as a special case. By this method various simple spin 
models including many Heisenberg models are constructed; in this paper a Heisenberg 
model means an isotropic spin model with no interactions among more than two spins. 
This method is independent of the spatial dimension of the lattice. 

I present typical Heisenberg spin models in one and two dimensions using thii method 
and show that they actually have dimer ground states; they have non-degenerate, finitely 
degenerate or infinitely degenerate dimer ground states depending on the choice of the 
models. Among them there are a series of one-dimensional models with linearly decayed 
exchange interactions. The ground states are doubly degenerate and the same as those of 
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Figure 1. Degenerate dimer ground stales for the spin model in (8). Lattice sitcs m rcprcsentcd 
by small circles and dimers (shm singlet pairs) m by Imps. The operation range of a Q: is 
also shown by a rectangle of dash-dotted lines. 

the Majumdar-Ghosh model. I also present a spin model with 4-spin interactions, which 
has the complete symmetry of a simple square lattice and degenerate dimer ground states. 

First we consider projection operators by examining the Majumdar-Ghosh model. For 
an N-site periodic chain, the Hamiltonian is written as 

N 

i=1 

where J > 0 and Si is the spin operator at site i. The doubly degenerate dimer ground 
states are shown in figure 1. The Hamiltonian (I)  is rewritten as 

Y 

with Eo = -1 J N  141. Here the projection operator of three spins at sites, i, i + 1 and i + 2 ,  
is defined as 

SIi, i + I,  i + 2 ]  = f{tSi + Si+, + Si+z)’ - $(; + 1)) (3) 

where subscript 3 of P3 means that it consists of three spin operators. The eigenvalue of 
P3 is 0 if S = f and 1 if S = $, where S is the magnitude of the total spin of the three 
sites. It is easily seen that the operation of each P3 in ( 2 )  on a dimer state gives the lowest 
value 0 and the ground-state energy is Eo. It has also been proved, by using the form of 
(Z), that there is no ground state except for the dimer states and there is a finite excitation 
gap in the limit of infinite volume [71. A variational calculation has been carried out for the 
first excited state with S = 1 181, although the exact wavefunction has not been found. The 
variational state gives J for the spin gap and the value is close to 0.2365 by numerical 
diagonalization [9, IO]. 

The projection operator Ps is extended to Lowdin’s projection operators [6] :  

where S,, and S,. are the largest and the smallest values of the total spin S of n sites, 
i l ,  i z ,  . . . , i,,. S ~ n  takes value 0 for even n and f for odd n. The eigenvalue of P. is 1 on the 
eigenstates with S = S,, and 0 otherwise, so that P. is also positive semidefinite. Hence 
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we can use P. with arbitrary n instead of 4 to consmct spin models with dimer ground 
states. By making linear combinations of P.'s with various positive coefficients, numerous 
Hamiltonians can be created. Some of them actually have dimer ground states each of 
which is a direct product of dimers [4]. P. with R > 3 generates many-spin interactions; 
e.g. Ps(P7) gives 4-(6-) spin interactions. 

In the above extension, only the positive semidefiniteness is effective among properties 
of the projection operator (4). Therefore it is possible to generalize the method to use 
various but appropriate positive semidefinite operators instead of (4). The present method 
is based on the following operator: 

m 

Q ; [ i ~ . i z  ,..., i.l=n{Si, +Si~+...+S~")Z-(Smin+i-l)(Smin+l)) (5) 
I=1 

where m is an arbitrary integer in the range of 1 4 m < S,, - S,,,jn, and i l ,  i?, ..., in 
are arbitrary n sites. This operator QF is clearly positive semidefinite. When m is chosen 
as m = S,, - S~", Qr is the same as the projection operator (4) except for a numerical 
factor. Q; with m less than S,, -&in, however, is not a projection operator; it has more 
than two eigenvalues. If we use Q; only with small m we can obtain simple spin models. 

We now explain the new method by constructing a one-dimensional Heisenberg model, 
which may be the simplest extension of the Majumdar-Ghosh model. The Hamiltonian we 
consider here is 

J N  
H = - 

8 Q$, i + 1, i f 2, i + 3, i +4] + 
i=1 

where J > 0 and EO = - $ J N .  If we find a state that gives 0 by the operation of 
Q$. . . . , i + 41 with any i ,  the state is the very ground state with the ground-state energy 
EO because of the positive semidefiniteness of Q:. When Q:[ i . .  . . , i + 41 is operated on 
each of two dimer states in figure 1, it works only spins on sites i to i + 4 which are 
enclosed by a rectangle of dash-dotted lines. Since the five sites include two dimers, the 
total spin of the five sites takes the lowest value Sd, = f so that the operation of Ql gives 
0. Thus it is shown that the dimer states in figure 1 are actually the ground states. When 
Q! is expanded, equation (6) reduces to 

N 

H = J c ( S i  . Sit1 t :Si * Sit2 + ;Si . Sit3 + :Si * Si+,+) (7) 

where constant terms have been cancelled out. Thus we have constructed a new spin model 
of a simple form with the exact dimer ground states. Note that the exchange interaction 
decays linearly and becomes 0 at the fifth neighbour site. 

A similar argument stands if we use QA[i, . . . , i + n - 11 with an arbitrary odd integer 
n instead of Q:[i, . . . , i + 41 in (6). Then the Hamiltonian is written and expanded as 

i=l 

i=l k=l 
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with J;’ = J(n - k)/(n - I). The exchange energy is J,@’ = J for a nearest-neighbour 
spin (k = 1). decays linearly with increasing distance and vanishes fork > n (the lattice 
constant is unity). This model reduces to the Majumdar-Ghosh model for n = 3 and to the 
model in (7) for n = 5. The ground states are the same dimer states (figure 1) as those of 
the Majumdar-Ghosh model again. It is noticed that the ground-state energy, Eo = - i J N ,  
is independent of n. 

( i , 2 )  (i+1,2) 

( ( 1 )  

. .  . 

Figure 2 lattices for onedimensional demrated Hamiltonians consisting of opmton Qks 
and dimers in lheii gmund states. A bold (normal) solid line represents an exchange interaction 
of strength 2 J ( J ) .  and aloop represents a dimer. 

In general QL[i,, iz.. . . , iJs generate only two-spin interactions and then create 
Heisenberg Hamiltonians. Note that il. i2. . . . , in, need not be successive sites and can 
be chosen arbitrarily. I present two examples of Hamiltonians consisting of Qi’s in one- 
dimensional decorated lattices. Although Qi is equal to 3 9  and can also be treated in the old 
scheme using projection operators, it is instructive lo examine the following examples. The 
first example is a Heisenberg model on a ladder lattice, in which the first and the second 
chains are connected by exchange interactions. as shown in figure 2(a). The exchange 
energy between spins connected by a bold solid line is 23 and that by a normal solid line 
is J .  In terms of Qi’s the Hamiltonian is rewritten as 

where J > 0 and EO = -(J/4)2&&,,in + 1)4N = - $ J N  for the 2N-site (N-unit 
cell) system. Note that each Q: corresponds to a triangle of three sites in the lattice; e.g. 
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Q:[(i, 1). (i, 2).  (i + 1, I)] represents a triangle where sites (i, l), (i. 2) and (i + I, 1) are 
three apices. A bold solid line and a normal solid line in figure 2(a) belong to four and two 
~ a n g l e s ,  respectively, so that the exchange energy of the former is twice as large as that 
of the latter. Dimers in the ground state are shown by loops in figure 2(a). Each triangle 
includes one dimer in the dimer configuration so that the corresponding Q: gives value 0 
and the ground-state energy becomes Eo. Since there is no dimer configuration equivalent 
to that in figure 2(a), the ground state may be unique. 

The second example of a decorated one-dimensional model is defined on the lattice 
shown in figure 2(b). The exchange energy between spins connected by a bold solid line is 
25 and that by a normal solid line is J .  In terms of Qi’s, the Hamiltonian is rewritten as 

where J > 0 and Eo = -(J/Z)ZS,,,i.(S,,,i. + 1)ZN = - q J N  for the 3N-site (N-unit cell) 
system. Dimers in a ground state are shown by loops in figure 2 8 ) .  Like the previous model 
in (9). each triangle corresponding to Q: includes one dimer so that Qi’s give eigenvalue 
0 and H gives the ground-state energy Eo. Unlike the previous model, there are many 
equivalent dimer configurations in this case. In fact we have another ground state if we 
replace two dimers, (i, 1) - (i, 2) and (i, 3) - (i + 1, I), in figure 2(b) by (i, 1) - (i, 3) and 
(i, 2) - ( i  + 1.1). Thus the number of degeneracy of the ground states is 2 x Z N f 2  under 
the periodic boundary condition. 

In two dimensions, the method works essentially in the same way. I present an example 
in which a Heisenberg Hamiltonian written in terms of Q: has degenerate ground states. On 
an N x N lattice (N: an even integer) with the periodic boundary condition, the Hamiltonian 
is given as 

where J > 0 and Eo = -4S,,,i.(Sd. + I )NZJ  = - 3 J N Z .  k is summed over (2 j  - 1,2), 
( Z i , Z j - l ) ,  ( Z i + I , Z j - l ) ,  (2i+2,2j) ,  (Z i+2 ,2 j+  1) , (2 i+I ,Zj+2) ,  ( Z , 2 j + 2 )  
and (2i - 1 , 2 j  + 1). 

The lattice is shown in figure 3, where the dash-dotted loop encloses a set of spins 
contributing a typical Q:. After Q:’s are expanded and constant terms are. cancelled out, 
the Hamiltonian appears in the form of H = Cij JijSi .Sj. Non-zero exchange interactions 
are shown in figure 3; they are 85 for a bold solid line, 25 for a normal solid line and J 
for a dashed line. A ground state is obtained if we place two dimers on each unit of four 
sites connected by bold solid lines. As shown in the bottom of figure 3, there are two ways 
to place dimers (loops in the figure) for each unit so that we have 2”’f4-fold degeneracy. 

Here we refer to two-dimensional spin models which can be written in terms of Q:’s 
and have already been found. One of them has been i n d u c e d  by Shastry and Sutherland 
[ll]. The Hamiltonian defines a square lattice with partially selected next-nearest-neighbour 
exchange interactions as well as all nearest-neighbour exchange interactions. The ground 
state consists of dimers on the next-nearest-neighbour bonds and may be unique since there 
is no 0the.r equivalent dimer configuration. Another model has been introduced by Bose and 
Mitra [12]. The Hamiltonian is invariant under a translation of double lattice spacings and 
has a non-degenerate dimer ground state. This Hamiltonian is given in a linear combination 
of operators, (Si + Sj + Sk)”s, which are essentially the same as ai’s. 
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Figure 3. A two-dimensiond lanice for Hamillonians io terms of opnlorr Pi’s. A bold solid 
line comspondr 10 81. 3 normal solid line 10 2J and a daskd tine 10 J In the boilom. two 
dimer confiyations in a unit of Ur lattice is shown, where dimers we represented by loops. A 
ground slate is gtven by plncing my one of lwo configuntions for each unit. 

It is interesting to construct a two-dimensional spin model that has dimer ground states 
and holds the full symmelry of a simple square lattice. As far as I have examined, any 
Heisenberg model that has a dimer ground state is not invariant under a translation of a 
single lattice spacing and a rotation of n/2 However, if we take 4-spin interactions into 
account we can construct a model with the full symmetry. The model is written as 

where J > 0. Each of operators QFs consists of nine spin operators in a 3 x 3 regime 
of the lattice. This Hamiltonian has eight degenerate dimer ground states in the infinite 
volume limit. as shown in figure 4. It is easily confirmed that every 3 x 3 regime includes 
three dimers in any of the dimer ground states and Qi’s give the eigenvalue 0. 

We have discussed only the case that the spin magnitude is f and demonstrated the new 
construction of spin models with dimer ground states. The construction is also applicable 
to isotropic spin models of spin magnitude 1 and of larger magnitudes, if we decompose 
each spin into spins of magnitude f and apply the present method to the f-spins. Affleck 
et al [7,131 first performed this decomposition and used projection operators like (3) to , 
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Figure 4. Fow of the eight ground states of (12). The figurer of the other four ground slates 
are given by rotating them by n/2. 

explain the Haldane gap [I41 of the one-dimensional spin-I Heisenberg system. In the 
present method we can replace their projection operators by positive semidefinite operators 
like (5) again. The method of Affleck eta! is also extended differently to include anisotropy 
[IS, 161. According to the anisotropy, the ground states are deviated from the simple dimer 
(valence-bond-solid) state, but they are found exactly and systematically. Here positive 
semidefinite operators different from (5) are used. 

I would like to thank Hal Tasaki, Tohru Koma, Kamhiro San0 and Mitsuhiro Ikegami for 
discussions. 
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