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Construction of spin models with dimer ground states
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Toyota Technological Institute, Tenpaku-ku, Nagoya 468, Japan

Received 26 January 1994

Abstract. A method to construct various s = % isotropic spin models with exact dimer ground
states is proposed. Constructed models are usually of much simpler forms than those produced
by the method using Léwdin's projection operators. They include a series of one-dimensional
Heisenberg models which consist of linearly decayed exchange interactions and are natural
extensions of the Majumdar-Ghosh model. A two-dimensional spin model with four spin
interactions is also constructed to have the same spatial symmetry as a simple square lattice.

Quantum spin systems with frustrated interactions have strong fluctuation and the fluctuation
causes particular ground states in some cases. The Majumdar-Ghosh model is such a
quantum system in one dimension known to have dimer ground states [1-3]. That is, the
ground states are doubly degenerate and each of them is exactly a direct product of dimers
or singlet pairs of nearest-neighbour spins. A dimer state is purely quantum mechanjcal and
has no correspondent in classical states.

It can be seen that the dimer states are the ground states of the Majumdar—Ghosh
model if the Hamiltonian is rewritten as a linear combination of projection operators with
positive coefficients [4]. Each of the projection cperators consists of three spin operators
and projects & state of three spins to the subspace of total spin %. Each projection operator
is positive semidefinite and the lowest eigenvalue is 0. When the Hamiltonian operates on
the dimer states, the projection operators in it give the value 0, so that the eigenvalue of
the Hamiltonian becomes the lowest.

Klein [4] introduced generalized projection operators to construct other Hamiltonians
with dimer ground states, Following this method many Hamiltonians with 4-spin interactions
are created and examined [4, 5]. There is also a similar formulation with Léwdin's projection
operators [4,6). If we simply develop the method to use projection operators consisting of
many spins, we have complicated Hamiltonians with many-spin interactions. It is difficult
to consider physical meanings of interactions among more than four spins,

In the present work, I propose a new method to constrnct spin models with exact
dimer ground states. This method is a generalization of the above method using Lowdin’s
projection operators and includes it as a special case. By this method various simple spin
models including many Heisenberg models are constructed; in this paper a Heisenberg
model means an isotropic spin model with no interactions among more than two spins.
This method is independent of the spatial dimension of the lattice.

I present typical Heisenberg spin models in one and two dimensions using this method
and show that they actually have dimer ground states; they have non-degenerate, finitely
degenerate or infinitely degenerate dimer ground states depending on the choice of the
models. Among them there are a series of one-dimensional models with linearly decayed
exchange interactions. The ground states are doubly degenerate and the same as those of
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Figure 1. Degenerate dimer ground states for the spin model in (8). Lattice sites are represented
by small circles and dimers (short singlet pairs) are by loops. The operation range of a Qé is
also shown by a rectangle of dash-dotted jines.

the Majumdar~Ghosh model. 1 also present a spin model with 4-spin interactions, which
has the complete symmetry of a simple square lattice and degenerate dimer ground states.

First we consider projection operators by examining the Majumdar—Ghosh model. For
an N-site periodic chain, the Hamiltonian is written as

N
H=J Z(Si Sz + 38 Sipa) (1)

i=1

where J > 0 and S; is the spin operator at site {. The doubly degenerate dimer ground
states are shown in figure 1. The Hamiltonian (1) is rewritten as

N
H=3%1) Pli,i+1,i+2]+E 2)
i=}

with Eg = —%J N [4]. Here the projection operator of three spins at sites, {, {41 and i +2,
is defined as

Pili i+ 1,0 42) = 1{(S; + Sis1 + S’ — 14 + 1)} 3

where subscript 3 of P; means that it consists of three spin operators. The eigenvalue of
Pis0if § = % and1if § = %, where § is the magnitude of the total spin of the three
sites. It is easily seen that the operation of each P; in (2) on a dimer state gives the lowest
value O and the ground-state energy is E¢. It has also been proved, by using the form of
(2), that there is no ground state except for the dimer states and there is a finite excitation
gap in the fimit of infinite volume [7}. A variational calculation has been carried out for the
first excited state with § = 1 [8], although the exact wavefunction has not been found. The
variational state gives %J for the spin gap and the value is close to 0.236J by numerical
diagonalization [9, 10].
The projection operator P; is extended to Léwdin’s projection operators [6]:

S"‘ﬁ‘ (Siy +8;, + -+ S 2 = S(S+1)

4
S=Snin Sz (Seaax + 1) ~ S5 + 1) )

Pn[ilpin----in]=

where Spax and Sy are the largest and the smallest values of the total spin S of » sites,
i1, 82, .-.,In- Smin takes value O for even n and -;- for odd n. The eigenvalue of P, is 1 on the
eigenstates with § = Spax and O otherwise, so that P, is also positive semidefinite. Hence
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we can use P, with arbitrary » instead of P; to construct spin models with dimer ground
states, By making linear combinations of P,’s with various positive coefficients, numerous
Hamiltonians can be created. Some of them actvally have dimer ground states each of
which is a direct product of dimers [4]. P, with n > 3 generates many-spin interactions;
e.g. Ps(P7) gives 4-(6-) spin interactions,

In the above extension, only the positive semidefiniteness is effective among properties
of the projection operator (4). Therefore it is possible to peneralize the method to use
various but appropriate positive semidefinite operators instead of (4). The present method
is based on the following operator:

]

Cplitiz, ... i) = H{Si, + S, 4+ 48,0 = (Smin +1 = D(Smin + 1) (5)
i=1

where m is an arbitrary integer in the range of 1 < m <€ Spax — Smin, and iy, 82, ..., 0,
are arbitrary n sites. This operator Q% is clearly positive semidefinite. When m is chosen
as m = Spx — Smin, @7 is the same as the projection operator (4) except for a numerical
factor. Q7 with m less than Sy — Syin. however, is not a projection operator; it has more
than two eigenvalues. If we use Q7 only with small m we can obtain simple spin models.

We now explain the new method by constructing a one-dimensional Heisenberg model,
which may be the simplest extension of the Majumdar~Ghosh model. The Hamiltonian we
consider here 1s

H =

cof

N
Y QML i+1,i+2,i+3,i+4]1+ B (6)
i=1

where J > 0 and Ep = —%J N. If we find a state that gives O by the operation of
QLli,....i + 4] with any i, the state is the very ground state with the ground-state energy
Ey becanse of the positive semidefiniteness of Q). When QL[i, ..., i + 4] is operated on
each of two dimer states in figure 1, it works only spins on sites { to { + 4 which are
enclosed by a rectangle of dash-dotted lines. Since the five sites include two dimers, the
total spin of the five sites takes the lowest value Spia = % so that the operation of Q_.'; gives
0. Thus it is shown that the dimer states in figure 1 are actually the ground states. When
Q_l, is expanded, equation (6) reduces to

N
H=T) (5 S +38 Suys+18 -S43 +15 Sira) @
i=!
where constant terms have been cancelled out. Thus we have constructed a new spin model
of a simple form with the exact dimer ground states. Note that the exchange interaction
decays linearly and becomes 0 at the fifth neighbour site.

A similar argument stands if we use Ql[Z,...,i 4+ n — 1] with an arbitrary odd integer
n instead of QLfi, ..., + 4} in (6). Then the Hamiltonian is written and expanded as

J
2(n—1)

N n—1

=33 JP8; S (85)

=i k=l

(n) —

N
S Qi+ L..itn-11+E (8a)
i=1
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with .ka”) = J(rn — k)/(n — 1). The exchange energy is J’f") = J for a nearest-neighbour
spin (k = 1), decays linearly with increasing distance and vanishes for & > n (the lattice
constant is unity). This model reduces to the Majumdar—Ghosh model for n = 3 and to the
model in (7) for n = 5. The ground states are the same dimer states (figure 1) as those of
the Majumdar—Ghosh model again. It is noticed that the ground-state energy, Ep = ~2J N,
is independent of ».

Figure 2. Lattices for one-dimensional decorated Hamiltonians consisting of operators Qé's
and dimers in their ground states. A bold (normat) solid line represents an exchange interaction
of strength 2.7(.J), and a loop represents a dimer,

In general Q},[i 1,42, ...,i,]’s generate only two-spin interactions and then create
Heisenberg Hamiltonians. Note that iy, i3, ...,1,, need not be successive sites and can
be chosen arbitrarily. I present two examples of Hamiltonians consisting of Q}’s in one-
dimensional decorated lattices, Although Q§ is equal to 3P and can also be treated in the old
scheme using projection operators, it is instructive to examine the following examples. The
first example is a Heisenberg model on a ladder Jattice, in which the first and the second
chains are connected by exchange interactions, as shown in figure 2{(a). The exchange
energy between spins connected by a bold solid line is 2J and that by a normal solid line
is J. In terms of Q}'s the Hamiltonian is rewritten as

2
B =23 S (0MG 1. G2, G+ L)+ Q4G 1. G.2), G — 1)} + Eo ©®

a=]

NS

where J > 0 and Ep = —(J/#)2Spia(Smin + 14N = —3JN for the 2N-site (N-unit
cell) system. Note that each Q3 corresponds to a triangle of three sites in the lattice; e.g.
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Q_i,[(i, 1), (i, 2), (i + 1, 1)] represents a triangle where sites (i, 1}, (i,2) and (¢ + 1, 1) are
three apices. A bold solid line and a normal solid line in figure 2(a) belong to four and two
triangles, respectively, so that the exchange energy of the former is twice as large as that
of the latter. Dimers in the ground state are shown by loops in figure 2(#). Each triangle
includes one dimer in the dimer configuration so that the corresponding Q1 gives value 0
and the ground-state energy becomes Ey. Since there is no dimer configuration equivalent
to that in figure 2(a), the ground state may be unique.

The second example of a decorated one-dimensional model is defined on the lattice
shown in figure 2(b). The exchange energy between spins connected by a bold solid line is
2J and that by a normal solid line is J. In terms of Q5’s, the Hamiltonian is rewritten as

I »
H =353 1050, 1), 6,2, .+ Q)G + 1, 1), G 2), G D+ Eo (10)
=1

where J > 0 and Ey = —(J/2)280i0 (Smin + 1)2N = —-%J N for the 3N-site (N-unit cell)
system. Dimers in a ground state are shown by loops in figure 2(b). Like the previous model
in (9), each triangle corresponding to Q3 includes one dimer so that Q1’s give eigenvalue
0 and H gives the ground-state energy Eg. Unlike the previous model, there are many
equivalent dimer configurations in this case. In fact we have another ground state if we
replace two dimers, (i, 1y — (f, 2) and (i, 3) — (i + L, 1), in figure 2(b) by (i, 1) — (¢, 3) and
(i,2) — (i + 1, I). Thus the number of degeneracy of the ground states is 2 x 2%/2 under
the periodic boundary condition.

In two dimensions, the method works essentially in the same way. I present an example
in which a Heisenberg Hamiltonian written in terms of Q; has degenerate ground states. CGn
an N x N lattice (N: an even integer) with the periodic boundary condition, the Hamiltonian
is given as

Ni2 NP2
H= % Z 303 0620, 2), i +1,2), i, 27 + 1), 2i + 1,25 + 1), K1+ Ep (I1)
i=1 j=1 k

where J > 0 and Ey = —4Suin(Smin + DN2J = —3JN2 k is summed over (2j — 1, 2),
L2 =D, Ci+1,2j=1), 2 +2,2/), Qi +2,2j+ 1,20 +1,2j+2), 2,2+ 2)
and (2i — 1,25+ 1).

The lattice is shown in figure 3, where the dash-dotted loop encloses a set of spins
contributing a typical Q;. After Q:’s are expanded and constant terms are cancelled out,
the Hamiltonian appears in the form of H = }_,; J;;S; - 8;. Non-zero exchange interactions
are shown in figure 3; they are 8J for a bold solid line, 2.7 for 2 normal solid line and J
for a dashed line. A ground state is obtained if we place two dimers on each unit of four
sites connected by bold solid lines. As shown in the bottom of figure 3, there are two ways
to place dimers (foops in the figure) for each unit so that we have 2V'/4.fold degeneracy.

Here we refer to two-dimensional spin models which can be written in terms of @3’s
and have already been found. One of them has been introduced by Shastry and Sutherland
[11}. The Hamiltonian defines a square lattice with partially selected next-nearest-neighbour
exchange interactions as well as all nearest-neighbour exchange interactions. The ground
state consists of dimers on the next-nearest-neighbour bonds and may be unique since there
is no other equivalent dimer configuration. Another model has been introduced by Bose and
Mitra [12]. The Hamiltonian is invariant under a translation of double lattice spacings and
has a non-degenerate dimer ground state. This Hamiltonian is given in a linear combination
of operators, (S; + §; + S;)*’s, which are essentially the same as Q;'s.
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Figure 3. A two-dimensional lattice for Harniltonians in terms of operators Q;‘s. A bold solid
line corresponds to 87, 2 normal solid line to 27 and a dashed line to J. In the bottom, two
dimer configurations in a unit of the [attice is shown, where dimers are represented by loops. A
ground state is given by placing any one of two configurations for each unit.

It is interesting to construct a two-dimensional spin model that has dimer ground states
and holds the full symmetry of a simple square lattice. As far as I have examined, any
Heisenberg modei that has a dimer ground state is not invariant under a translation of a
single lattice spacing and a rotation of w/2. However, if we take 4-spin interactions into
account we can construct a model with the full symmetry. The model is written as

N N
H=1% % Ofl{G+p.j+Mp=012%2=0,12] (12a)
i=1 j=1
Q3.1 ={8%G, ) ~ 1 + DHS*G. /Y - 3E + 1) (12b)
2 2
SE =23 Serojinr (12¢)
p=0 A=0

where J > 0. Each of operators Q7’s consists of nine spin operators in a 3 x 3 regime
of the lattice. This Hamiltonian has eight degenerate dimer ground states in the infinite
volume limit, as shown in figure 4. It is easily confirmed that every 3 x 3 regime includes
three dimers in any of the dimer ground states and Q2’s give the eigenvalue Q.

We have discussed only the case that the spin magnitude is % and demonstrated the new
construction of spin models with dimer ground states. The construction is also applicable
to isotropic spin models of spin magnitude 1 and of larger magnitudes, if we decompose
each spin into spins of magnitude 1 and apply the present method to the 1-spins. Affleck
et al [7,13] first performed this decomposition and used projection operators like (3) to
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Figure 4. Four of the eight ground states of (12). The figures of the other four ground states

are given by rotating them by = /2.

explain the Haldane gap [14] of the one-dimensional spin-1 Heisenberg system. In the
present method we can replace their projection operators by positive semidefinite operators
like (3) again. The method of Affleck ez af is also extended differently to include anisotropy
[15,16]. According to the anisotropy, the ground states are deviated from the simple dimer
(valence-bond-solid) state, but they are found exactly and systematically. Here positive
semidefinite operators different from (5) are used.

T would like to thank Hal Tasaki, Tohru Koma, Kazuhiro Sano and Mitsuhiro Ikegami for
discussions.
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